Combinatorics Chris Piech CS109, Stanford University

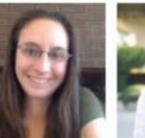
ORI

Review

Essential Information

CS109 Community

Dedicated, intelligent, hardworking teaching assistants



Counting

We are counting: # of events, # of outcomes, # of objects

Two Key Rules

Counting outcomes with or:

Inclusion Exclusion:

If outcomes can come from set A or set B, then the total number of outcomes is $|A| + |B| - |A \cap B|$.

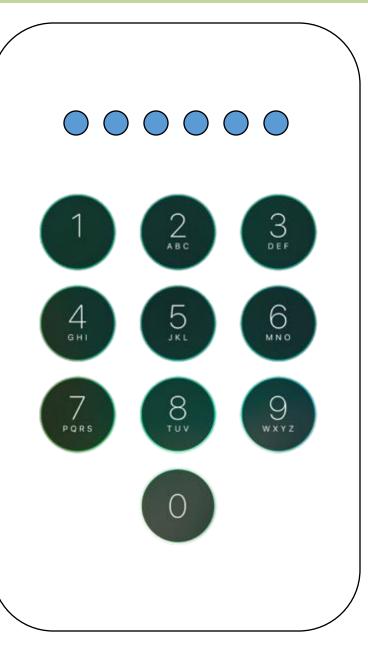
Counting outcomes with steps:

Product Rule of Counting:

If outcomes are generated via a process with r steps, where step i has n_i outcomes, then the total number of outcomes is:

$$n_1 \times n_2 \times \cdots \times n_r = \prod_{i=1}^r n_i$$

How Many Unique 6 digit passcodes?



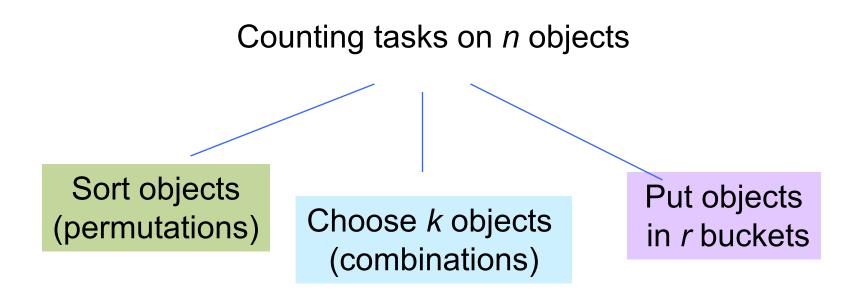
Approach: count by steps

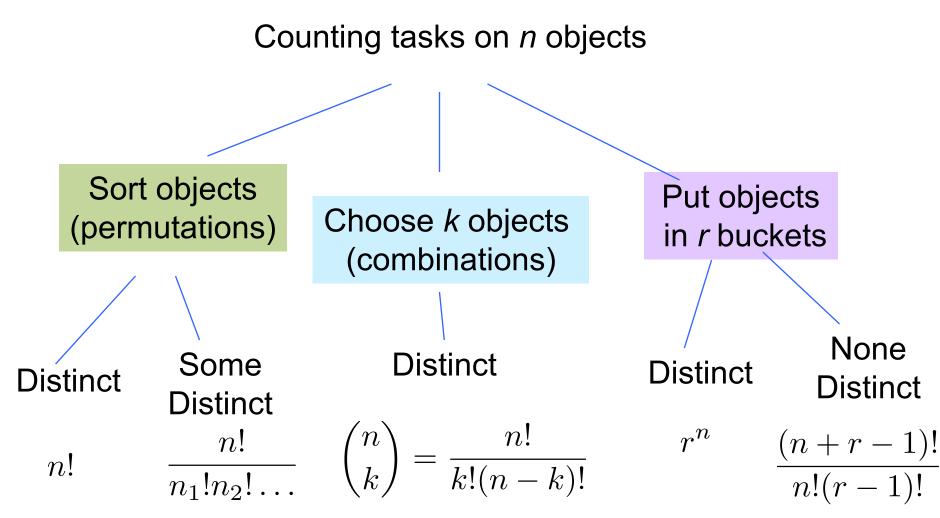
- Step 1: first digit in passcode (10 outcomes)
- Step 2: second digit in passcode (10 outcomes)

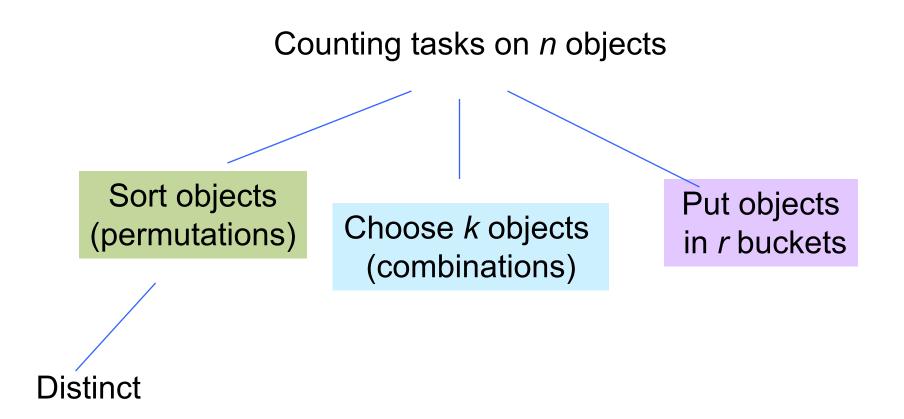
Step 6: second digit in passcode (10 outcomes)

 $total = n_1 \times n_2 \times \cdots \times n_r$ $= 10 \times 10 \times 10 \times 10 \times 10 \times 10$

End Review







Sort 5 distinct cans:

Step 1: Chose first can (5 options)

Sort 5 distinct cans:

- **Step 1: Chose first can (5 options)**
- **Step 2: Chose second can (4 options)**

$5 \times 4 \times 3 \times 2 \times 1 =$

120 unique sorts

Irina

Def Permutations:

A permutation is an ordered arrangement of distinct object. *n* objects can be permuted in:

 $n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1 = n!$

(Select 1st object out of n, then 2nd object out of n - 1, etc.)



Making perms of distinct objects is a two step process

Step 1

Step 2

perms of distinct objects

perms considering some objects are indistinct

Х

perms of just the indistinct objects

perms of distinct objects

perms considering some objects are indistinct

perms of just the indistinct objects

perms of distinct objects

perms of just the indistinct objects perms considering some objects are indistinct

General Way to Count Permutations

Def: General Permutations:

When there are *n* objects n_1 are the same (indistinguishable) and n_2 are the same and

 n_r are the same,

There are: $\frac{n!}{n_1!n_2!\dots n_r!}$

Unique orderings ("permutations")

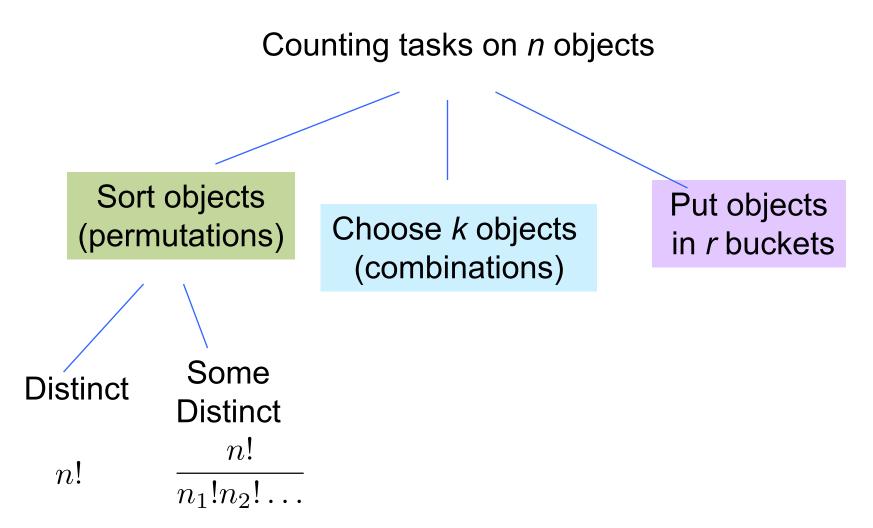
How many orderings?

 $= 120/(3! \times 2!) = 10$

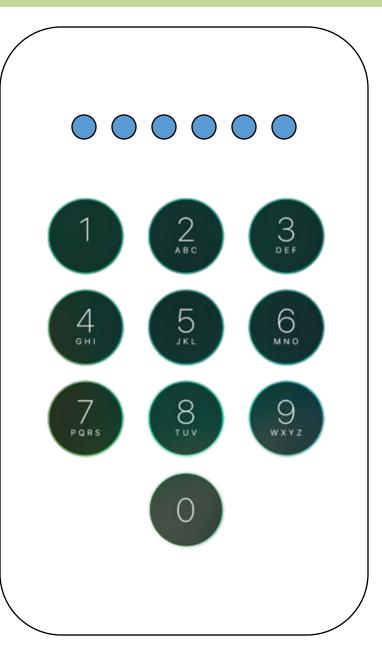
How many orderings of letters?

MISSISSIPPI

 $=\frac{11!}{1!4!4!2!}=34,650$



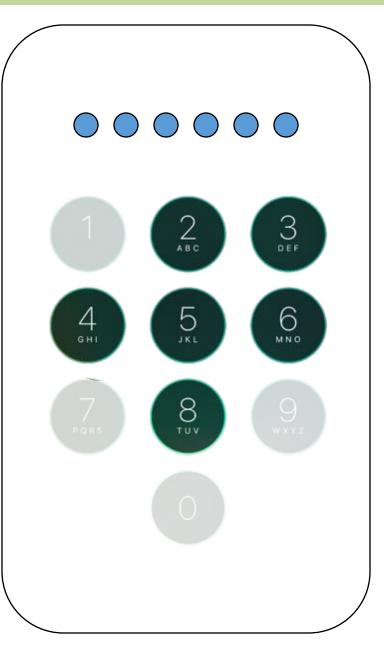
How Many Unique 6 digit passcodes?



How many unique 6 digit passcodes are there?

$10^6 = 1,000,000$

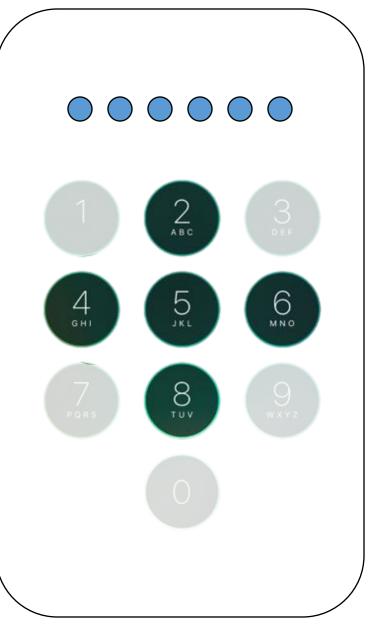
How many possible codes 6 smudges?



If a phone password uses each of **six** distinct numbers, how many unique six digit passcodes are there?

6! = 720

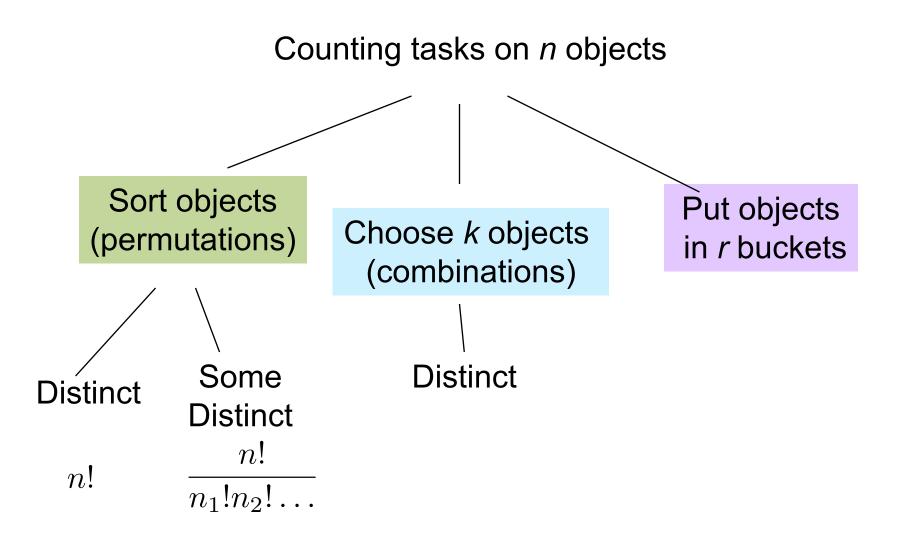
How many possible codes 5 smudges?



If a phone password uses each of **five** distinct numbers, how many unique six digit passcodes are there?

Five mutually exclusive cases: 2 was repeated 4 was repeated 5 was repeated 6 was repeated 8 was repeated

$$=5 \times \frac{6!}{2!} = 1,800$$



There are n = 20 people How many ways can we **chose** k = 5 people to get cake?

Consider this generative process

Step 1: Randomly order people

There are n = 20 people

How many ways can we **chose** k = 5 people to get cake?

step 1 ways = n!

Step 2: Draw a line at pos k

There are n = 20 people

How many ways can we **chose** k = 5 people to get cake?

20

18

17

19

step 2 ways = 1

Step 3: Allow Cake Group to Mingle

There are n = 20 people

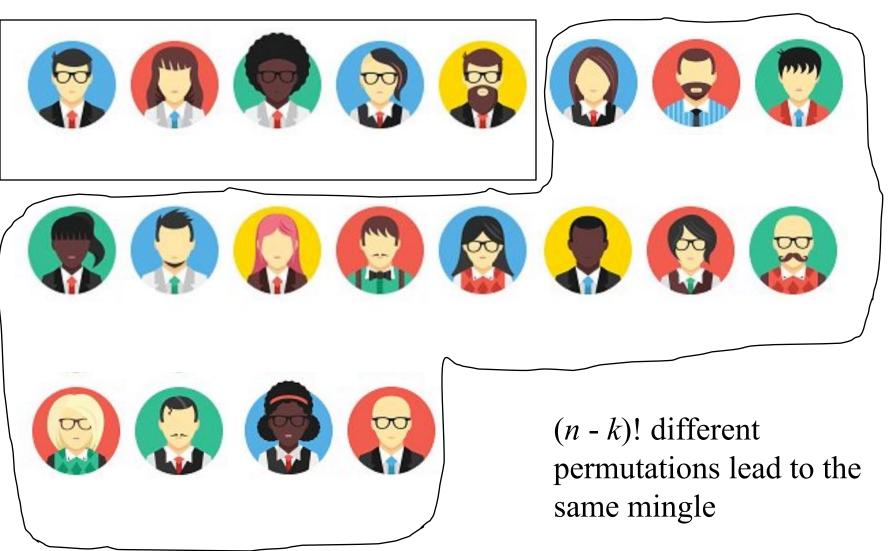
How many ways can we **chose** k = 5 people to get cake?

k! different permutations lead to the same mingle

Step 4: Allow nonCake Group to Mingle

There are n = 20 people

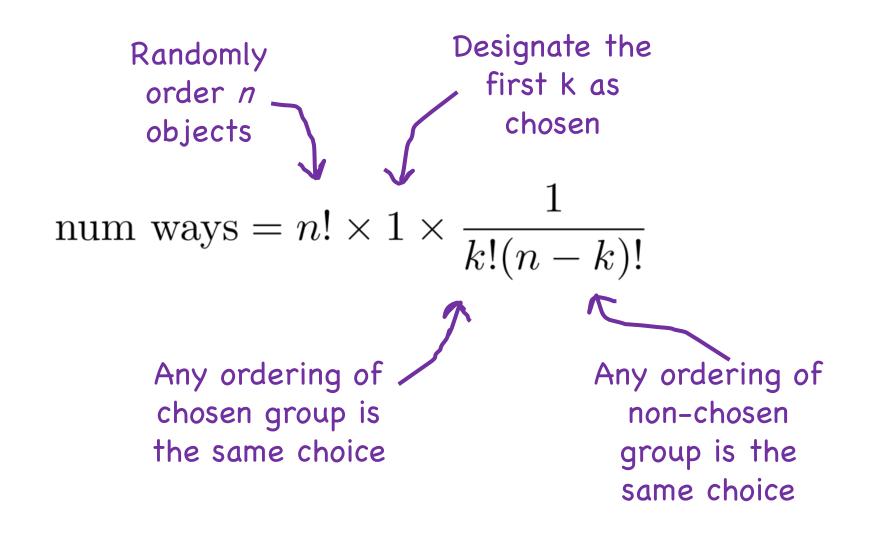
How many ways can we **chose** k = 5 people to get cake?



Step 4: Allow nonCake Group to Mingle

There are n = 20 people

How many ways can we chose k = 5 people to get cake?



Step 4: Allow nonCake Group to Mingle

There are n = 20 people

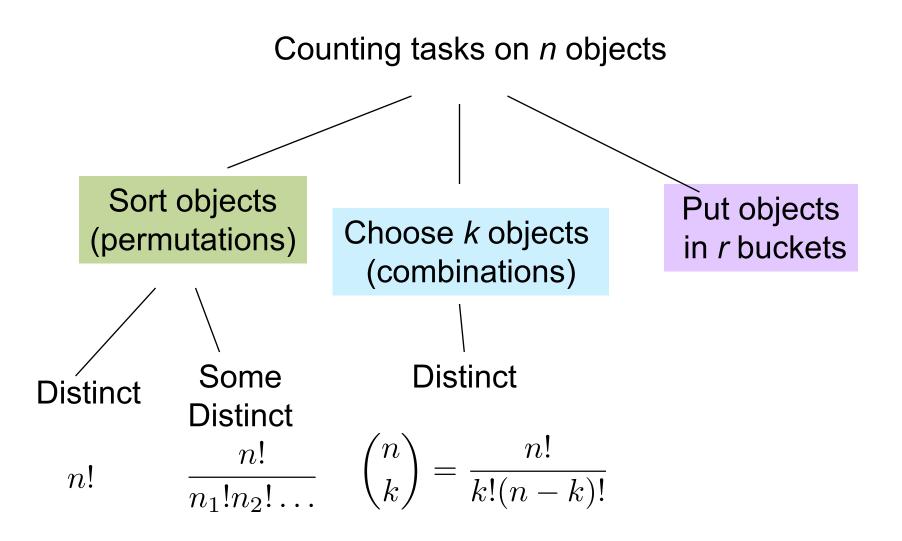
How many ways can we **chose** k = 5 people to get cake?

num ways
$$= \binom{n}{k}$$

* Also called binomial coefficients

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k \cdot y^{n-k}$$

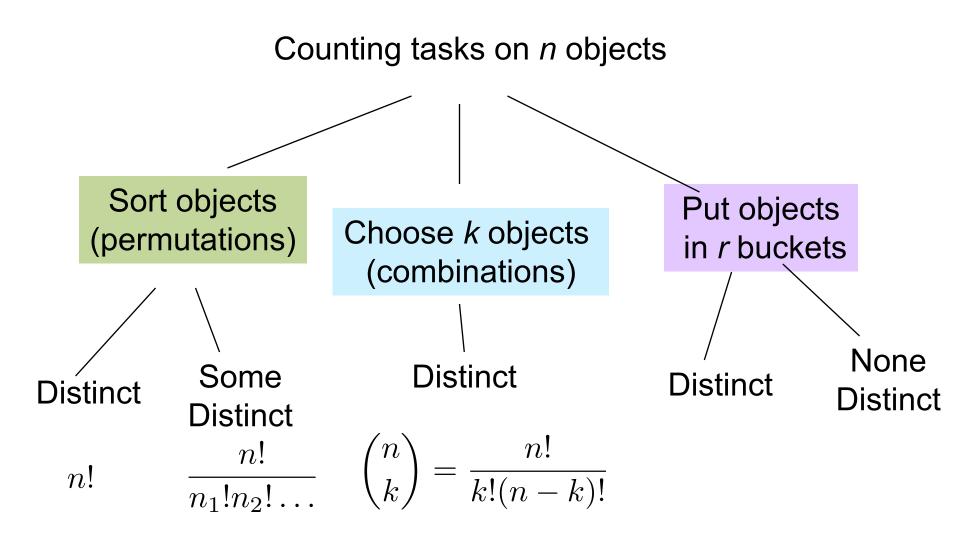
Combinatorics



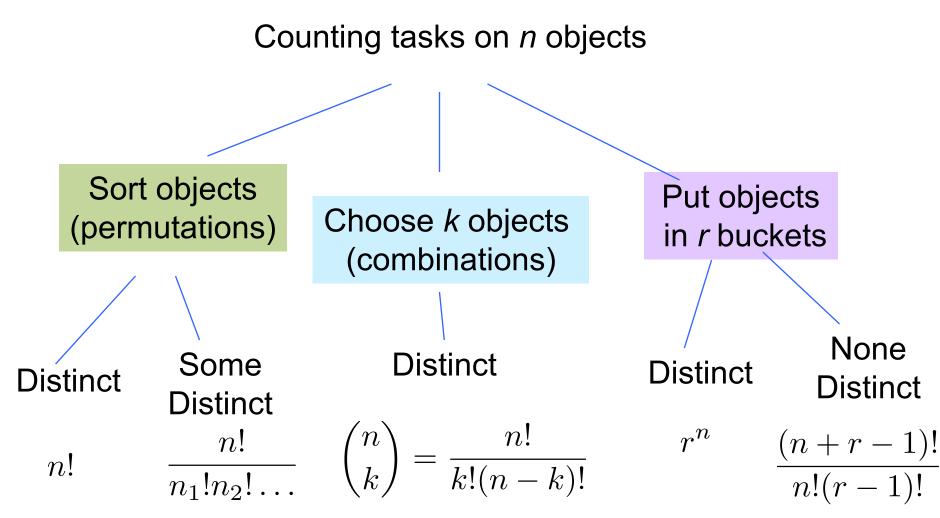
8,000 villagers. How many distinct ways can you chose 2 to play a game?

 $=\frac{8000!}{7998!2!}=31,996,000$

Combinatorics



Combinatorics

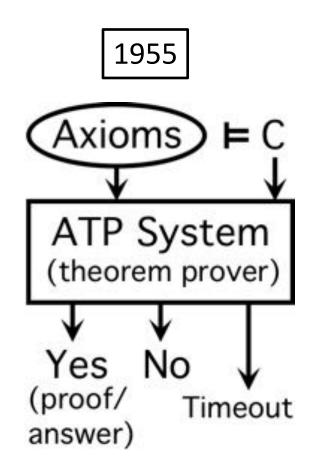


Something is going on in the world of AI

Modern Al or, How we learned to combine probability and programming

Brief History

Early Optimism 1950



Early Optimism 1950

"Machines will be capable, within twenty years, of doing any work a man can do." –Herbert Simon, 1952

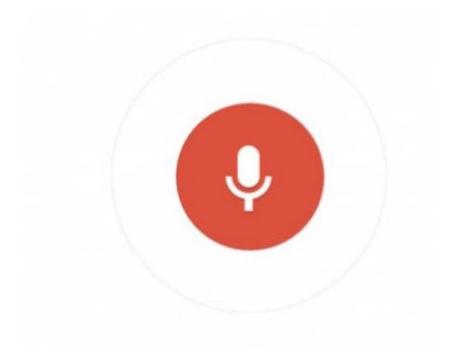
Underwhelming Results 1950s to 1980s

The world is too complex

BRACEYOURSELVES

WINTER IS COMING

Told Speech Was 30 Years Out



Almost perfect...

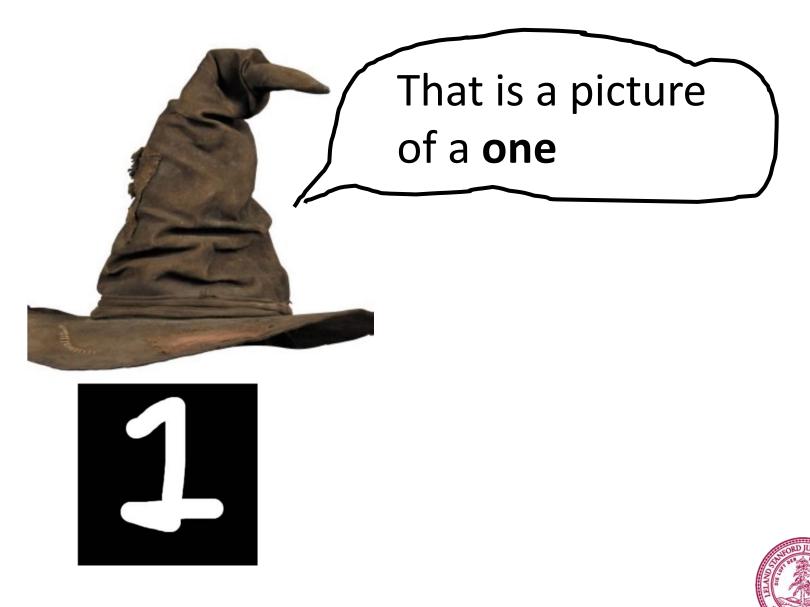
What is going on?

[suspense]

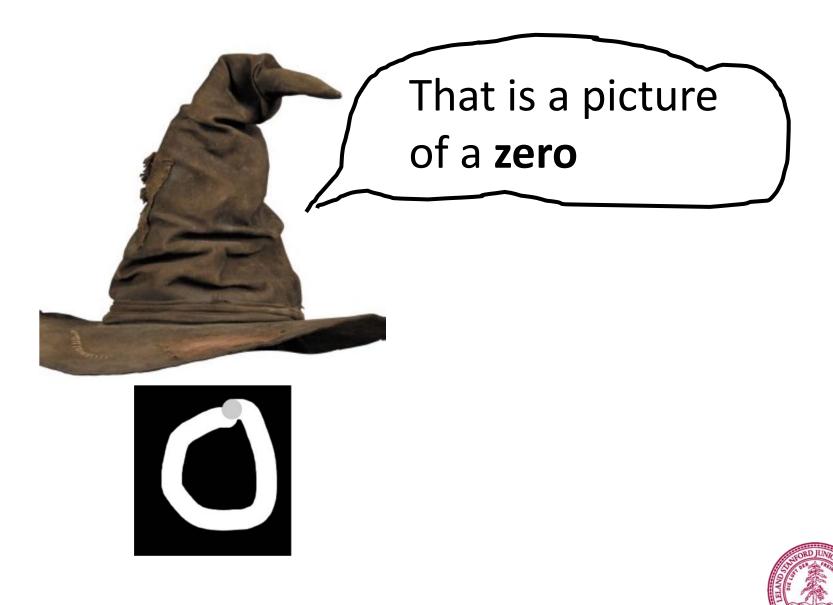
Focus on one problem

Computer Vision

Classification



Classification



Classification

* It doesn't have to be correct all of the time

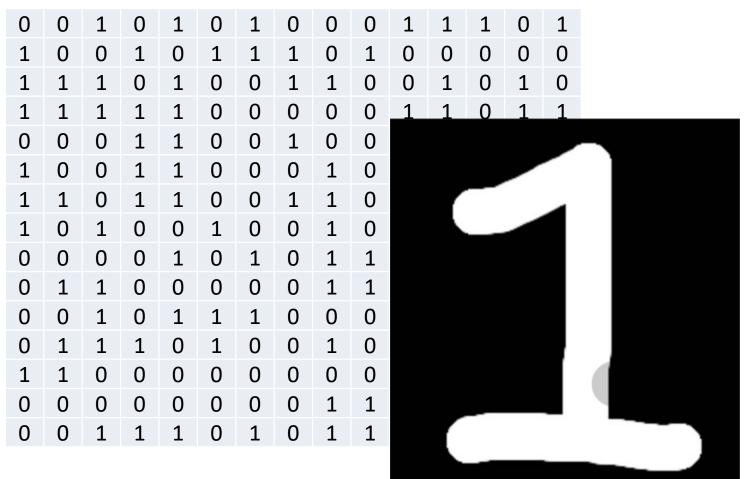
Can you do it?

What number is this?

What number is this?

How about now?

What a computer sees



What a human sees

Very hard to Program

public class HarryHat extends ConsoleProgram {

```
public void run() {
    println("Todo: Write program");
}

Piech, CS106A, Stanford University
```


Two Great Ideas

1. Probability from Examples

2. Artificial Neurons

Two Great Ideas

1. Probability from Examples

2. Artificial Neurons

1. Probability From Examples

When Does the Magic Happen?

Lots of + Sound Data + Probability

Machine Learning

Basically just a rebranding of statistics and probability.

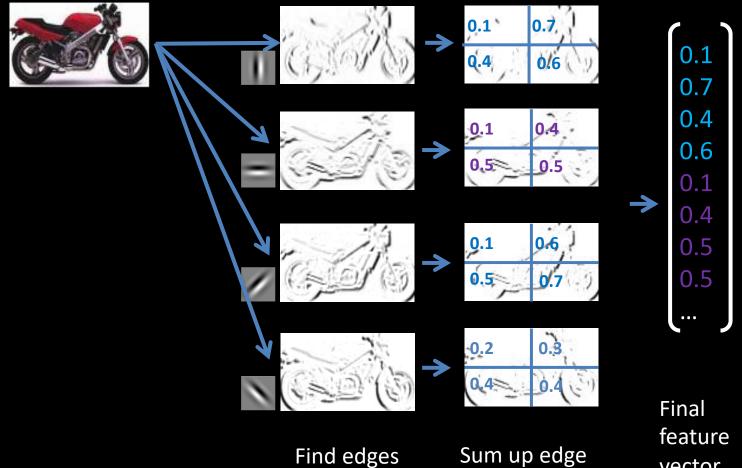
Vision is Hard

You see this:

But the camera sees this:

194	210	201	212	199	213	215	195	178	158	182	209
180	189	190	221	209	205	191	167	147	115	129	163
114	126	140	188	176	165	152	140	170	106	78	88
87	103	115	154	143	142	149	153	173	101	57	57
102	112	106	131	122	138	152	147	128	84	58	66
94	95	79	104	105	124	129	113	107	87	69	67
68	71	69	98	89	92	98	95	89	88	76	67
41	56	68	99	63	45	60	82	58	76	75	65
20	43	69	75	56	41	51	73	55	70	63	44
50	50	57	69	75	75	73	74	53	68	59	37
72	59	53	66	84	92	84	74	57	72	63	42
67	61	58	65	75	78	76	73	59	75	69	50

Human Designed Features



at four

orientations

vector

strength in

each quadrant

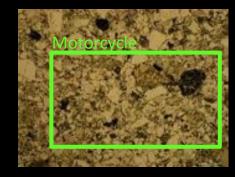
[Andrew Ng]

Some Great Thinkers

Daphne Koller

Straight ML Not Perfect...

Motorcycle



Motorcycle

Migria Systems, Inc.

Two Great Ideas

1. Probability from Examples

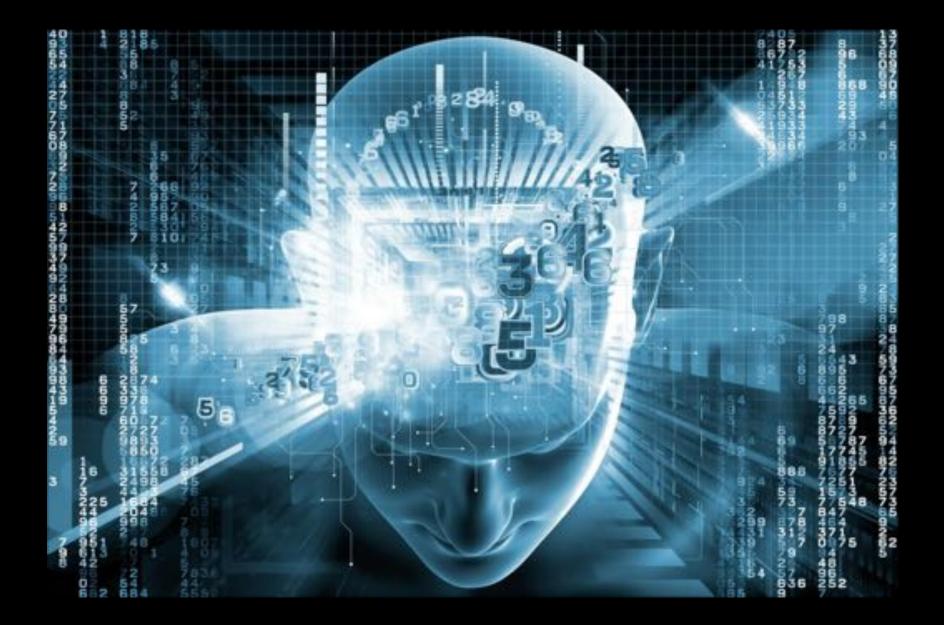
2. Artificial Neurons

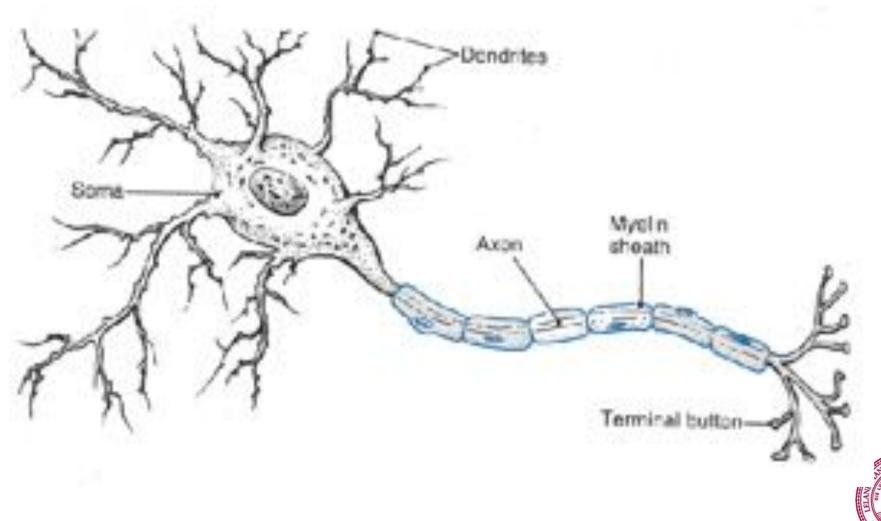
Two Great Ideas

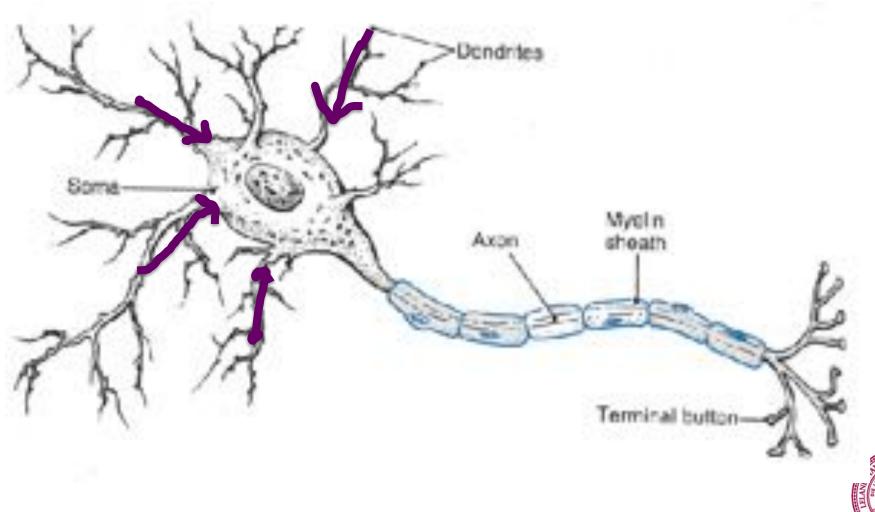
1. Probability from Examples

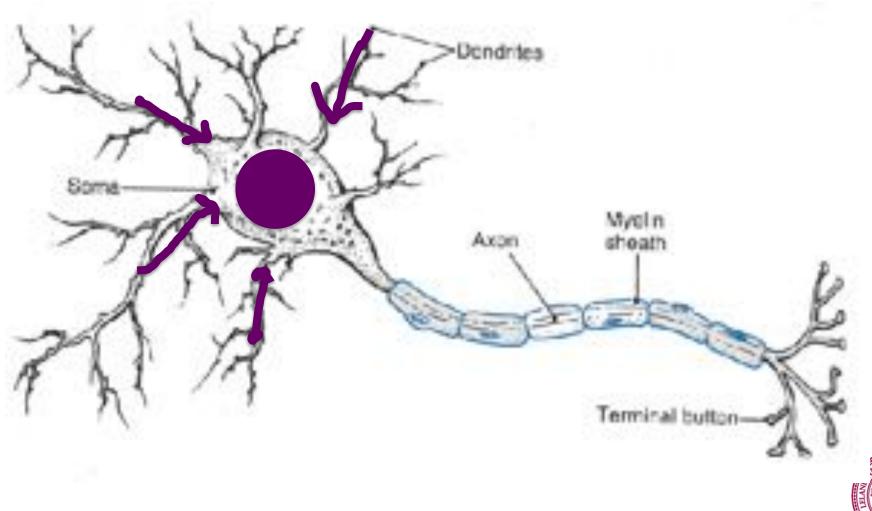
2. Artificial Neurons

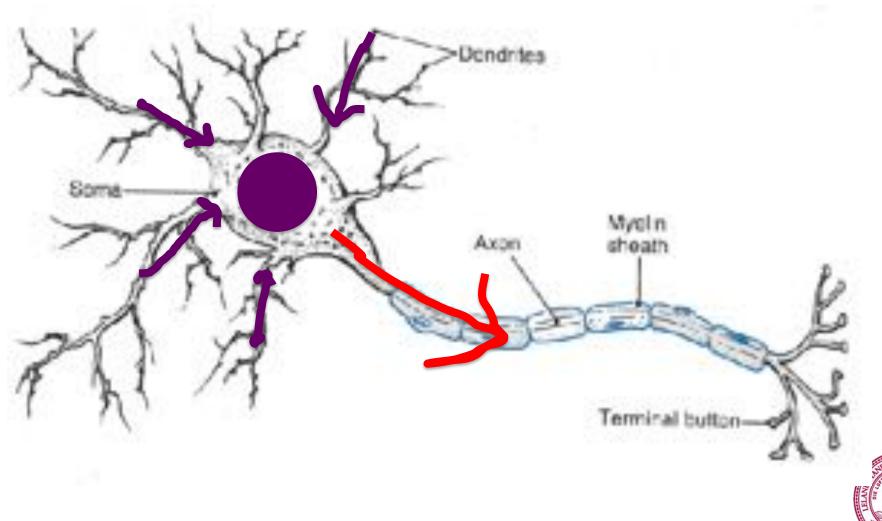
2. Artificial Neurons



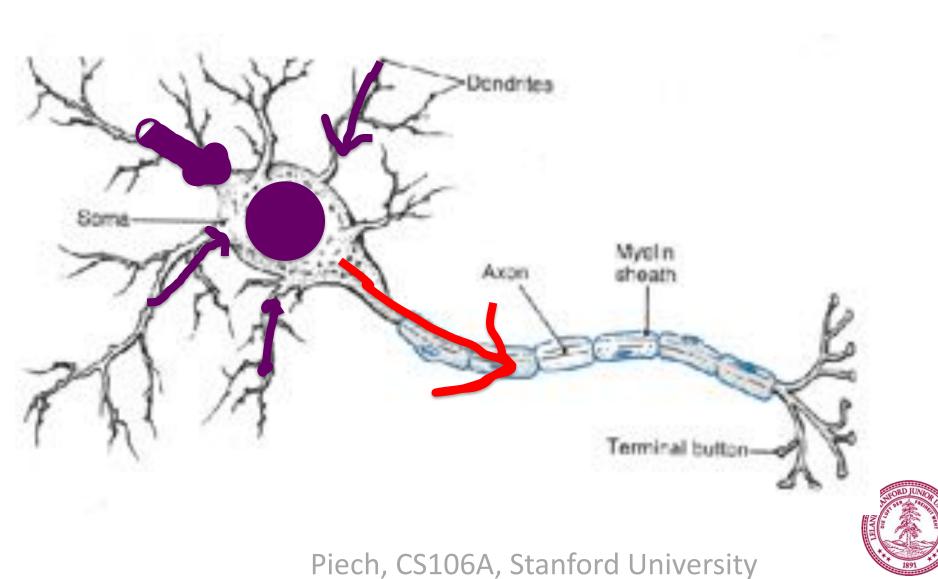




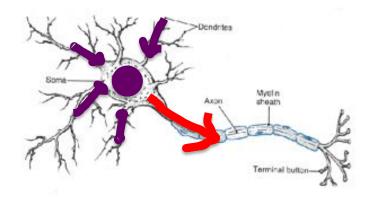


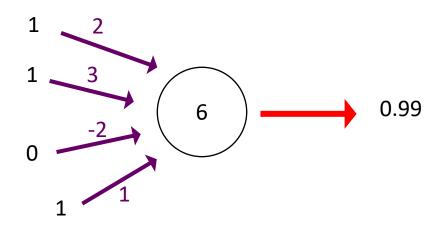


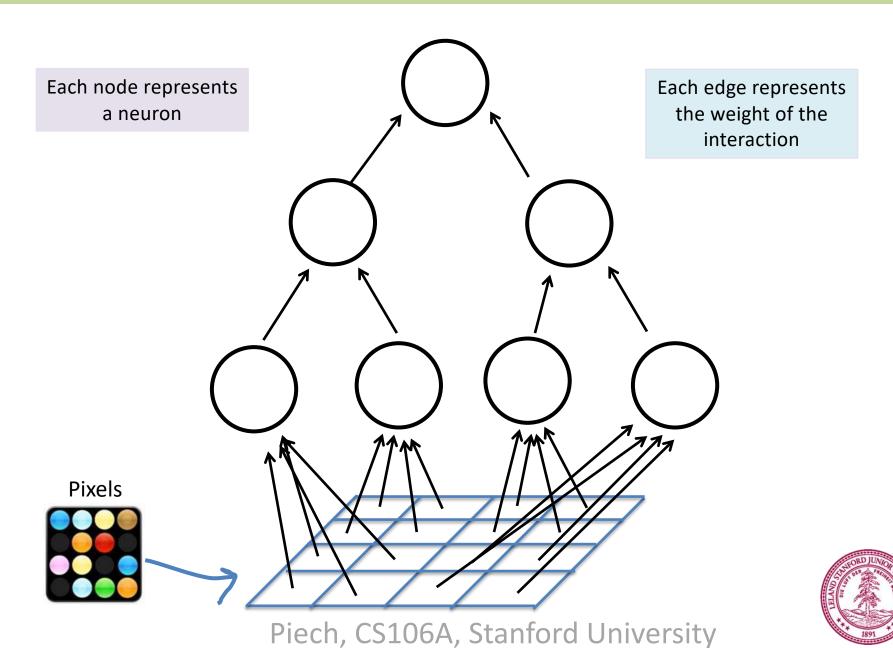
Some Inputs are More Important

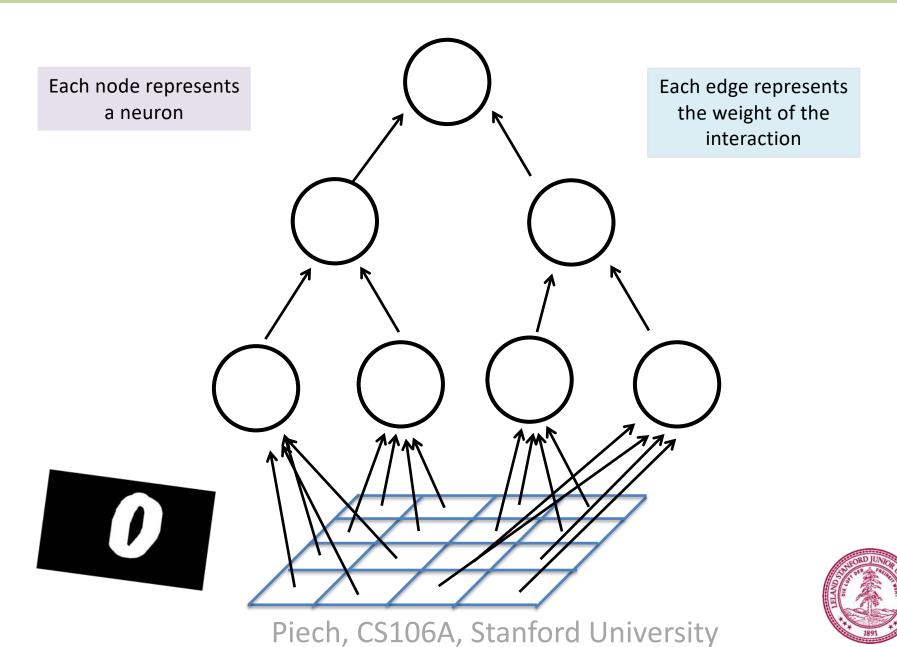


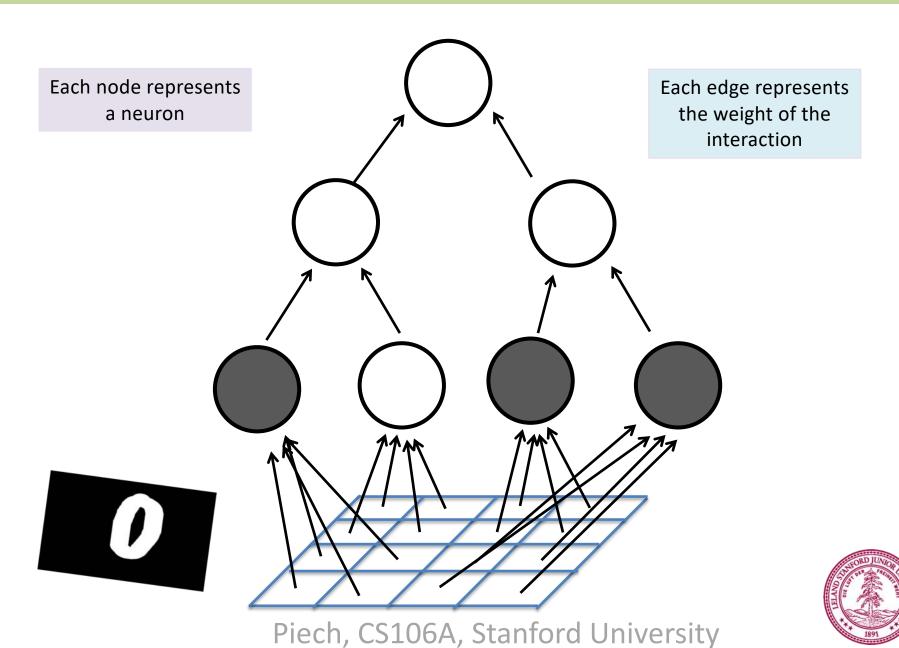
Artificial Neuron

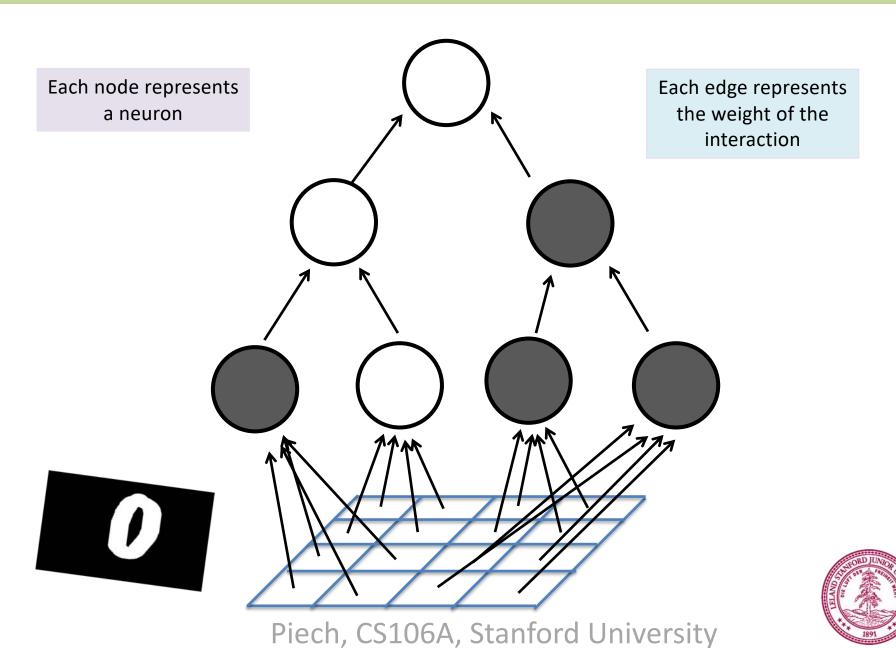


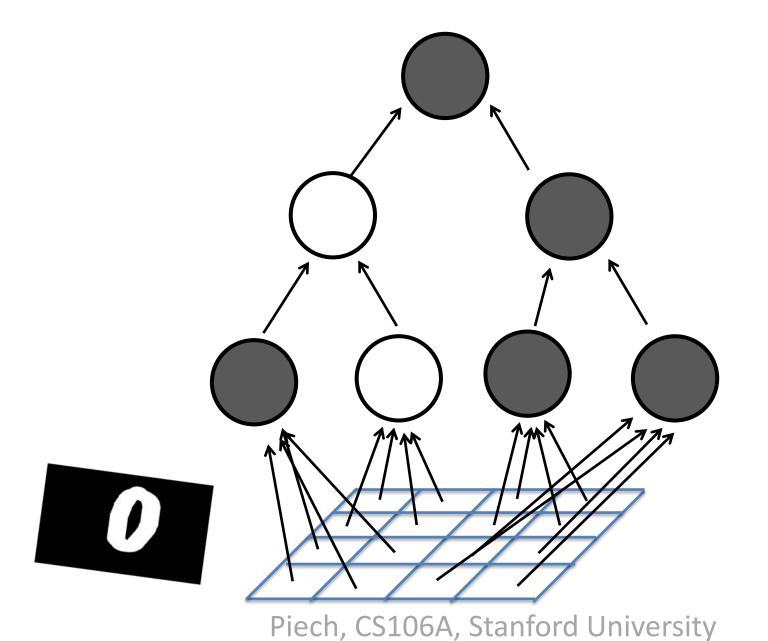




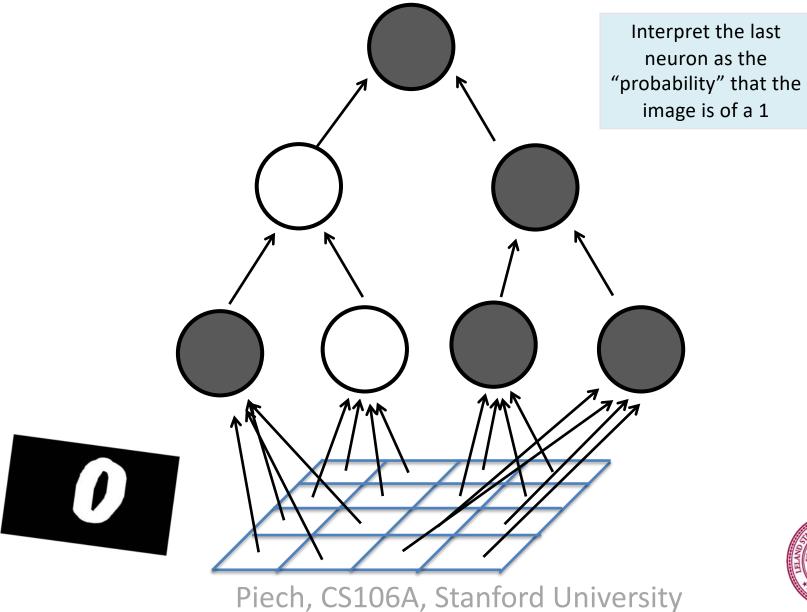


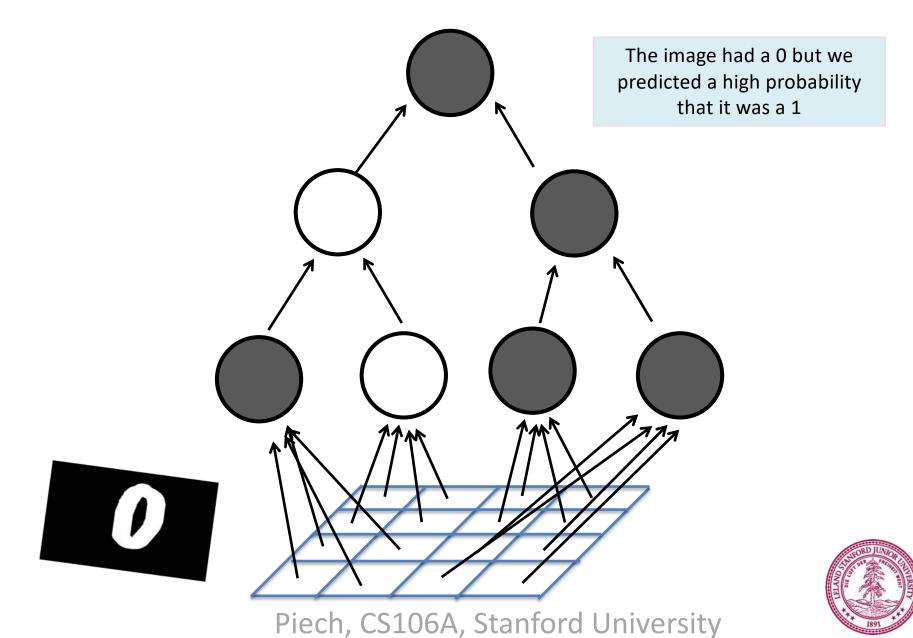


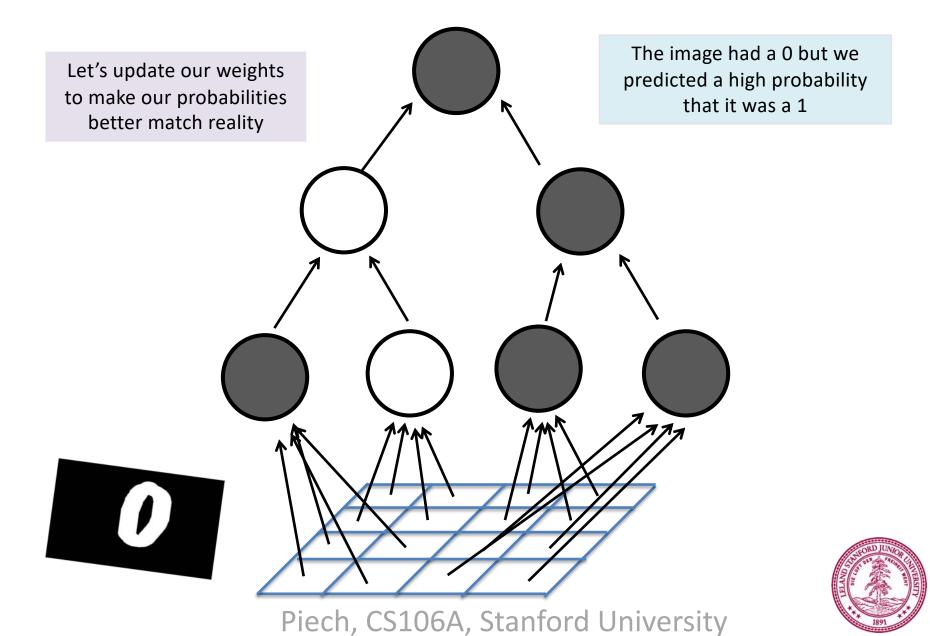


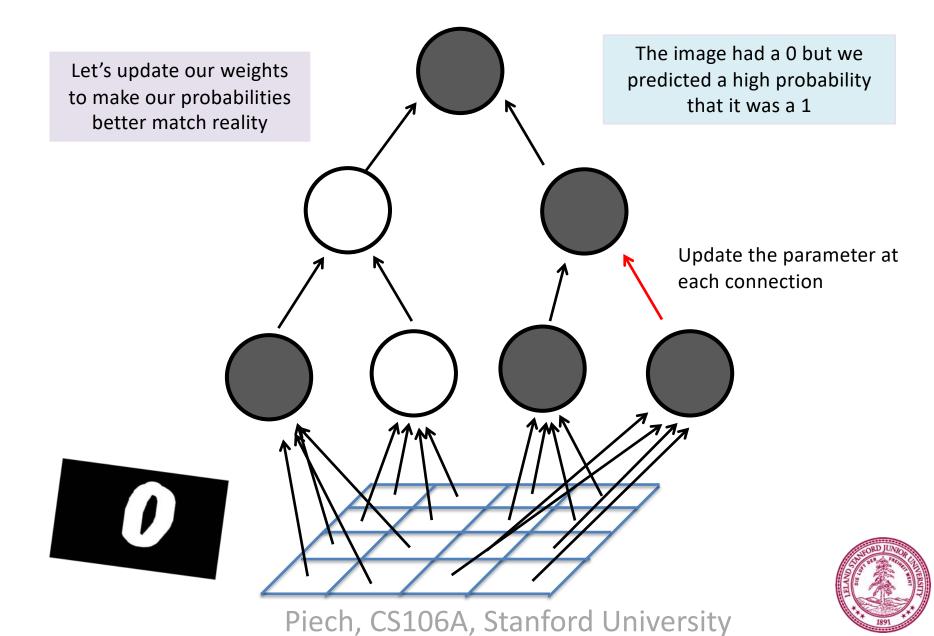


AND LUNGO





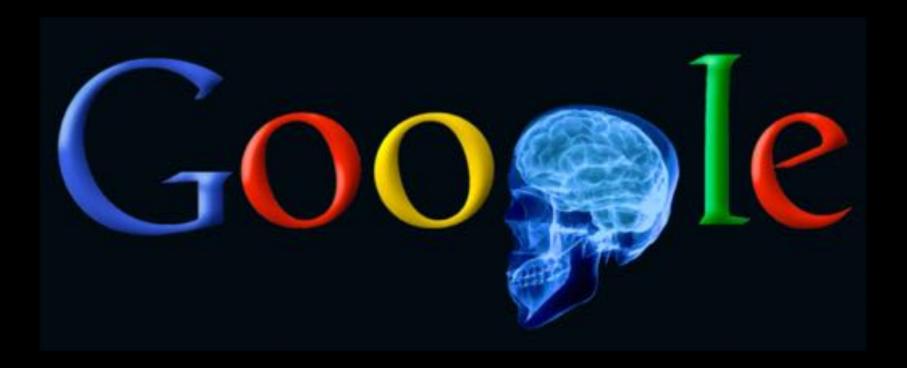




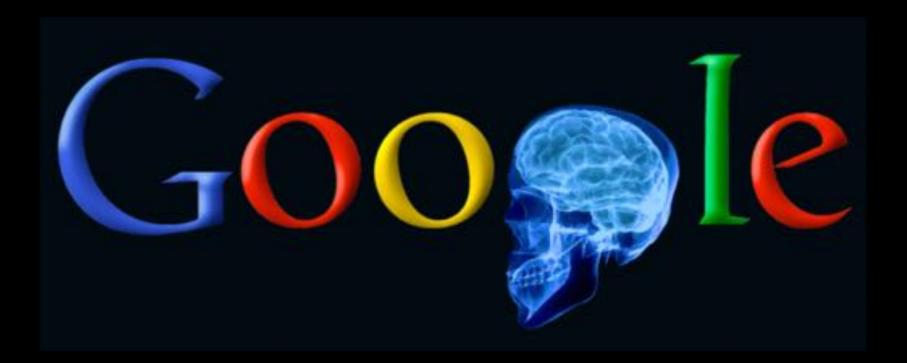
Gradient of output layer params

$$\begin{split} \frac{\partial L}{\partial \theta_i^{(\hat{y})}} &= \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \theta_i^{(\hat{y})}} \\ \hat{y} &= \sigma \left(\sum_{j=0}^{m_h} \mathbf{h}_j \theta_j^{(\hat{y})} \right) \\ \frac{\partial \hat{y}}{\partial \theta_i^{(\hat{y})}} &= \sigma \left(\sum_{j=0}^{m_h} \mathbf{h}_j \theta_j^{(\hat{y})} \right) \left[1 - \sigma \left(\sum_{j=0}^{m_h} \mathbf{h}_j \theta_j^{(\hat{y})} \right) \right] \cdot \frac{\partial}{\partial \theta_i^{(\hat{y})}} \sum_{j=0}^{m_h} \mathbf{h}_j \theta_j^{(\hat{y})} \\ &= \hat{y} [1 - \hat{y}] \cdot \frac{\partial}{\partial \theta_i^{(\hat{y})}} \sum_{j=0}^{m_h} \mathbf{h}_j \theta_j^{(\hat{y})} \\ &= \hat{y} [1 - \hat{y}] \cdot h_i \end{split}$$

Google Brain



Google Brain



1 Trillion Artificial Neurons

Other Neurons

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

A Neuron That Fires When It Sees Cats

Top stimuli from the test set

Optimal stimulus by numerical optimization

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

smoothhound, smoothhound shark, Mustelus mustelus American smooth dogfish, Mustelus canis Florida smoothhound, Mustelus norrisi whitetip shark, reef whitetip shark, Triaenodon obseus Atlantic spiny dogfish, Squalus acanthias Pacific spiny dogfish, Squalus suckleyi hammerhead, hammerhead shark smooth hammerhead, Sphyrna zygaena smalleye hammerhead, Sphyrna tudes shovelhead, bonnethead, bonnet shark, Sphyrna tiburo angel shark, angelfish, Squatina squatina, monkfish electric ray, crampfish, numbfish, torpedo smalltooth sawfish, Pristis pectinatus guitarfish

roughtail stingray, Dasyatis centroura

butterny ray

eagle ray

spotted eagle ray, spotted ray, Aetobatus narinari cownose ray, cow-nosed ray, Rhinoptera bonasus

manta, manta ray, devilfish

Atlantic manta, Manta birostris

devil ray, Mobula hypostoma grey skate, gray skate, Raja batis little skate, Raja erinacea

Stingray

Mantaray

0.005% 1.5%

Random guess

Pre Neural Networks

GoogLeNet

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

0.005% 1.5% 43.9%

Random guess

Pre Neural Networks

GoogLeNet

Szegedy et al, Going Deeper With Convolutions, CVPR 2015

Random guess

Pre Neural Networks

NASNet

https://arxiv.org/pdf/1707.07012.pdf

Where is this useful?

A machine learning algorithm performs **better than** the best dermatologists.

Developed this year, at Stanford.

Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks." *Nature* 542.7632 (2017): 115-118.

Open Problem: One Shot Learning

B Lake, R Salakhutdinov, J Tenenbaum. Science 2015. Human-level concept learning through probabilistic program induction.

Current deep learning methods are not enough to move the needle as far as we want, **especially on socially relevant problems** that often do not have the benefit of massive public datasets. The best new ideas are coming from probability theory

Prediction: The person who solves one shot learning problem will use core probability Closest thing to magic you can learn. Now is the time, Stanford is the place.

